Hemispheric Asymmetries in Substorm Recovery Time Scales

M. O. Fillingim¹ (matt@ssl.berkeley.edu), D. Chua², G. A. Germany^{3*}, and J. F. Spann⁴

¹Space Sciences Laboratory, University of California, Berkeley
²Space Science Division, Naval Research Laboratory
³Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville
^{*}now at Ball Aerospace & Technologies Corp., Albuquerque, NM
⁴NASA, Marshall Space Flight Center, Huntsville, AL

Motivation and Previous Work

Previous work has shown that the behavior of aurora is different in darkness versus sunlight:

Aurora are more common in darkness (*Liou et al.*, 1997)

Aurora are more energetic in darkness

(Liou et al., 2001)

Substorms last longer in darkness (*Chua et al.*, 2004)

What's the **difference** between darkness and sunlight? **Ionospheric conductivity!**

→ Influences (controls?) occurrence and energy of aurora and length of substorms

Implications for auroral conjugacy

 \rightarrow More energy deposited in dark hemisphere

Previous work is based on statistical results \rightarrow What about for individual substorms?

Methodology

Identify substorms when IMAGE FUV and Polar UVI are viewing opposite hemispheres

Focus on substorms near solstice and equinox

Determine substorm recovery times scales for both instruments by fitting the decay of the area-integrated photon flux to an exponential:

 $P(t) = P_{max} e^{-t/\tau} + P_o$ where τ is the **recovery time**

(Best Typical) Example

<u>Results</u>

For individual substorms, we find...

Large variation in substorm time scale, τ \rightarrow from 4 minutes to 2 ½ hours, $<\tau > \sim$ 43 min

Recovery time scales **longer** in **darkness** with large variation in hemispheric difference of τ

→ $\tau_{darkness}/\tau_{sunlight}$ varies from > 4.5 to < 1.3 with an average of ~ 2 during solstice $\tau_{north}/\tau_{south}$ ~ 1 during equinox

Consistent with previous statistical results → Asymmetric substorm energy input

Implication: Ionospheric conductivity plays an important role in substorms dynamics

In sunlit (higher conductivity) hemisphere, ambient plasma density is sufficient to carry imposed current [e.g., *Newell et al.*, 2001] → no or weak potential/particle acceleration

What about recovery time scales...? Treat each hemisphere as a separate circuit; circuits have different resistance/time constant If $\tau \sim R \sim 1/\sigma$, as σ increases, τ decreases

Challenges/Complications

- Elusive "isolated" substorm intensifications
- Differences in instrument responses
- Differences in spacecraft orbits/fields of view
- \rightarrow Identical instruments in conjugate orbits