Electron Acceleration in the Near Earth Plasma Sheet

M. O. Fillingim, G. K. Parks, R. P. Lin

Space Sciences Laboratory, University of California, Berkeley
Outline

- Introduction
 - Electron spectra in the plasma sheet
 - Electron spectral changes in the plasma sheet

- Data
 - Rapid (~ 1 second) spectral change from Wind/3DP

- Analysis
 - In-situ acceleration → non-adiabatic
 - Spatial boundary motion

- Conclusion
 - Inconclusive, but leaning toward boundary motion
Electron Spectra in the Plasma Sheet

• From 10s of eV to several 100 keV, electron spectra can be well characterized by a Kappa function [Vasyliunas, 1968]
 \[f \sim [1 + E/\kappa E_0]^{-\kappa-1} \]
 \[j \sim E[1 + E/\kappa E_0]^{-\kappa-1} \]
 where \(\kappa \) is a constant (spectral slope at large \(E \)),
 \(E_0 \) is the energy of peak flux, and
 \(E_0 = kT[1 – 3/2\kappa] \)

• Maxwellian for \(E < \kappa E_0 \)
• Power law for \(E >> \kappa E_0 \)
• Maxwellian as \(\kappa \to \infty \)

• During active (and quiet) times, electron spectra have multiple components [e.g., Christon et al., 1991]
Electron Spectral Changes in the PS

Example from Christon et al. [1988]
- Slow transition in temperature (E_o) $\kappa \sim$ constant (in this case)
- Lower kT, higher κ during quiet intervals ($AE < 100$ nT);
- Higher kT, lower(?) κ during active intervals ($AE > 100$ nT)
 [Christon et al., 1991]

Ambiguity: Spatial or temporal?
Instrumentation

Wind 3DP
- EESA-High
 - Energy range: 100 eV – 30 keV
 - Time resolution: 3 sec (1 s/c spin) every ~ 100 seconds
- SST-Foil
 - Energy range: 25 keV – 600 keV (> 1 MeV)
 - Time resolution: 12.5 sec for 25 keV; 50 sec for 600 keV

At 06 UT on 1997-07-26, Wind was located in the plasma sheet at [-11, 3, 0] R_E GSM
Overview of PS Electron Observations

During intervals of auroral brightening, large B fluctuation, high ion velocity;

- n_e decreases,

- kT_e increases

\Rightarrow electron spectral change
Electron Spectra

05:42:43 UT
smooth \(B \),
isotropic ions,
cold, isotropic \(e^- \)

05:46:04 UT
fluctuating \(B \),
hot ions, hot \(e^- \)

05:44:24
fluctuating \(B \),
dynamic ions
??? \(e^- \)
Sub-Spin (200 ms) Resolution

1 keV flux decreases (in all directions),
3 keV flux \(\sim\) constant,
9 keV flux increases,
in \(\sim\) 1 second;

\(\mathbf{B}\) increases from 1.5 to
40 nT in \(\sim\) 2 sec (\(\geq 20x\))

2005 Joint Assembly
Spectral Fits: Before and After

\[
\begin{align*}
n &= 0.85 \text{ cm}^{-3} \\
kT &= 0.37 \text{ keV} \\
\kappa &= 4.2
\end{align*}
\]

\[
\begin{align*}
n_1 &= 0.78 \text{ cm}^{-3} \\
n_2 &= 0.16 \text{ cm}^{-3} \\
kT_1 &= 0.75 \text{ keV} \\
kT_2 &= 3.50 \text{ keV} \\
\kappa_1 &= 4.6 \\
\kappa_2 &= 7.0
\end{align*}
\]

\[
\begin{align*}
n &= 0.16 \text{ cm}^{-3} \\
kT &= 3.00 \text{ keV} \\
\kappa &= 7.0
\end{align*}
\]
In-situ Acceleration?

Non-adiabatic in fluid sense:

\[P = \alpha n^\gamma, \quad P = nkT \]

\[\Rightarrow kT = \alpha n^{\gamma-1} \]

- \(\alpha \) = specific entropy
- \(\gamma \) = polytropic index
- \(\gamma = 5/3 \Rightarrow \text{adiabatic} \)

Non-adiabatic in kinetic sense:

- \(\mu = E_\perp / B = \text{constant} \Rightarrow \delta E_\perp / E_\perp = \delta B / B \) (e.g., betatron)
- Expect translation in energy with constant spectral index (slope)
- Not observed; \(\kappa = 4.2 \to 7.0 \)
- Also, \(B_{\text{initial}} \) (05:42) and \(B_{\text{final}} \) (05:46) approx. equal (~ 20 nT)
Propagating particle boundary?

- $\rho_e \sim 100 \sqrt{E_\perp [\text{keV}]/B [\text{nT}]} \text{ km}$
 - For $B = 10 \text{ nT}, \ E_\perp = 25 \text{ keV}, \ \rho_e \sim 50 \text{ km}$
 - $E_\perp = 600 \text{ keV}, \ \rho_e \sim 250 \text{ km}$
 - For $B = 40 \text{ nT}, \ E_\perp = 25 \text{ keV}, \ \rho_e \sim 12.5 \text{ km}$
 - $E_\perp = 600 \text{ keV}, \ \rho_e \sim 62.5 \text{ km}$

- $\langle v_i \rangle \sim 300 \text{ km/s}$

- In 1 second, traverse few ρ_e for $E_\perp \sim 600 \text{ keV}$
 - few 10s of ρ_e for $E_\perp \sim 25 \text{ keV}$
 - $\sim 100 \rho_e$ for $E_\perp \sim 1 \text{ keV}$ (thermal e^-)

- In this case, don’t expect adiabatic behavior:
 - \Rightarrow not following plasma element; inhomogeneities in α
 - [cf., Baumjohann and Paschmann, 1989]
Summary

We have presented high-time resolution (200 ms) observations of a rapid (~ 1 second) electron spectral change in the plasma sheet during an “active” period (aurora, large ΔB, large $<v_i>$) → n_e decrease, kT_e increase, κ increase (softening of spectrum)

Inconsistent with *local* adiabatic (fluid or kinetic) acceleration
Consistent with crossing a boundary several energetic ρ_e thick

Ambiguity remains:
- local non-adiabatic process (temporal), or
- sampling different plasma populations (spatial)
 (simplest interpretation)