Electron Acceleration in the Near Earth Plasma Sheet

M. O. Fillingim, G. K. Parks, R. P. Lin

Space Sciences Laboratory, University of California, Berkeley

2005 Joint Assembly

Outline

• Introduction

- Electron spectra in the plasma sheet
- Electron spectral changes in the plasma sheet
- Data
 - \Rightarrow Rapid (~ 1 second) spectral change from Wind/3DP
- Analysis
 - In-situ acceleration → non-adiabatic
 - Spatial boundary motion
- Conclusion

⇒ Inconclusive, but leaning toward boundary motion

Electron Spectra in the Plasma Sheet

• From 10s of eV to several 100 keV, electron spectra can be well characterized by a Kappa function [*Vasyliunas*, 1968]

$$f \sim [1 + E/\kappa E_o]^{-\kappa-1}$$
$$j \sim E[1 + E/\kappa E_o]^{-\kappa-1}$$

where κ is a constant (spectral slope at large E), E_o is the energy of peak flux, and $E_o = kT[1 - 3/2\kappa]$

- Maxwellian for $E < \kappa E_o$
- Power law for $E >> \kappa E_o$
- Maxwellian as $\kappa \to \infty$
- During active (and quiet) times, electron spectra have multiple components [e.g., *Christon et al.*, 1991]

2005 Joint Assembly

Electron Spectral Changes in the PS

Example from *Christon et al.* [1988]

- Slow transition in temperature (E_o)
 κ ~ constant (in this case)
- Lower kT, higher κ during quiet intervals (AE < 100 nT);
- Higher kT, lower(?) κ during active intervals (AE > 100 nT) [*Christon et al.*, 1991]

Ambiguity: Spatial or temporal?

2005 Joint Assembly

Instrumentation

Wind 3DP

- EESA-High
 - Energy range: 100 eV 30 keV
 - Time resolution: 3 sec (1 s/c spin) every ~ 100 seconds
- SST-Foil
 - Energy range: 25 keV 600 keV (> 1 MeV)
 - Time resolution: 12.5 sec for 25 keV; 50 sec for 600 keV

At 06 UT on 1997-07-26, Wind was located in the plasma sheet at $[-11, 3, 0] R_E$ GSM

2005 Joint Assembly

Overview of PS Electron Observations

During intervals of auroral brightening,

large B fluctuation,

high ion velocity;

- n_e decreases,
- kT_e increases
- ⇒ electron spectral change

2005 Joint Assembly

05:42:43 UT smooth **B**, isotropic ions, cold, isotropic e⁻

05:46:04 UT fluctuating **B**, hot ions, hot e⁻

05:44:24 fluctuating **B**, dynamic ions ??? e⁻

2005 Joint Assembly

Sub-Spin (200 ms)Resolution

1 keV flux decreases
(in all directions),
3 keV flux ~ constant,
9 keV flux increases,
in ~ 1 second;

B increases from 1.5 to 40 nT in \sim 2 sec (\geq 20x)

2005 Joint Assembly

2005 Joint Assembly

In-situ Acceleration?

Non-adiabatic in kinetic sense:

 $\mu = E_{\perp}/B = \text{constant} \Rightarrow \delta E_{\perp}/E_{\perp} = \delta B/B \text{ (e.g., betatron)}$ Expect translation in energy with constant spectral index (slope) Not observed; $\kappa = 4.2 \Rightarrow 7.0$ Also, B_{initial} (05:42) and B_{final} (05:46) approx. equal (~ 20 nT)

2005 Joint Assembly

Propagating particle boundary?

- $\rho_e \sim 100 \sqrt{E_{\perp}} \text{ [keV]/B [nT] km}$ For B = 10 nT, $E_{\perp} = 25 \text{ keV}$, $\rho_e \sim 50 \text{ km}$ $E_{\perp} = 600 \text{ keV}$, $\rho_e \sim 250 \text{ km}$ For B = 40 nT, $E_{\perp} = 25 \text{ keV}$, $\rho_e \sim 12.5 \text{ km}$ $E_{\perp} = 600 \text{ keV}$, $\rho_e \sim 62.5 \text{ km}$
- $< v_i > ~ 300 \text{ km/s}$
- In 1 second, traverse few ρ_e for $E_{\perp} \sim 600 \text{ keV}$ few 10s of ρ_e for $E_{\perp} \sim 25 \text{ keV}$ $\sim 100 \rho_e$ for $E_{\perp} \sim 1 \text{ keV}$ (thermal e⁻)
- In this case, don't expect adiabatic behavior:
 ⇒ not following plasma element; inhomogeneities in α [cf., *Baumjohann and Paschmann*, 1989]

2005 Joint Assembly

Summary

We have presented high-time resolution (200 ms) observations of a rapid (~ 1 second) electron spectral change in the plasma sheet during an "active" period (aurora, large ΔB , large $\langle v_i \rangle$) \Rightarrow n_e decrease, kT_e increase, κ increase (softening of spectrum)

Inconsistent with *local* adiabatic (fluid or kinetic) acceleration Consistent with crossing a boundary several energetic ρ_e thick

Ambiguity remains:

- local non-adiabatic process (temporal), or
- sampling different plasma populations (spatial) (simplest interpretation)