Dayside Aurora as an Indicator of Asymmetric Solar Wind-Magnetosphere Energy Transfer

M. O. Fillingim, G. K. Parks, and S. B. Mende

Space Sciences Laboratory, University of California, Berkeley

Northern Hemisphere IMAGE WIC

Southern Hemisphere Polar UVI
Introduction (part 1)

- The dayside magnetosphere responds directly to incident interplanetary magnetic field (IMF) and solar wind energy

- Changes in the IMF and solar wind drive changes in magnetospheric and ionospheric convection

- Currents and (in the case of upward currents) aurora respond to these changes

→ Dayside aurora is a direct indicator of how the magnetosphere-ionosphere system responds to IMF and solar wind energy input
Introduction (part 2)

- Focus on afternoon sector – 15 MLT bright spot
- Region of persistent auroral emission centered near 15 MLT and 75 degrees latitude [Cogger et al., 1977; Liou et al., 1997]
- Caused by low energy (< ~ 1 keV) electron precipitation [McDiarmid et al.; 1975, Evans, 1985; Newell et al., 1996]
- Co-located with maximum in Region 1 upward field aligned current [Iijima and Potemra, 1987]
- Appearance and behavior influenced by solar wind and IMF [Murphree et al., 1981; Vo and Murphree, 1995]
- Can be structured and dynamic (string of pearls configuration) [Lui et al., 1987; Potemra et al., 1990, Rostoker et al., 1992]
- Varies with season: more likely in summer [Liou et al., 2001] → hemispheric differences
Introduction (part 3)

- Previous conjugate observations limited to small scales (in situ point measurements or ground based instruments) in at least one hemisphere [Dickinson et al., 1986; Mende et al., 1990; Burns et al., 1990, 1992; Vo et al., 1995]

- Fillingim et al. [2005] presented the first simultaneous images of dayside aurora from two global auroral imagers in opposite hemispheres (IMAGE WIC in northern hemisphere and Polar UVI in south)

- Addressed the issue of conjugacy of the dayside aurora on a synoptic scale for the first time
- Related differences in aurora to solar wind and IMF conditions
- Continuation of the work of Fillingim et al. [2005]
Spacecraft Orbits

IMAGE
Launch: Mar. 25, 2000
Apogee: 8 R_E
Period: 14 hours

Polar
Launch: Feb. 24, 1996
Apogee: 9 R_E
Period: 18 hours
Instrumentation

IMAGE Wideband Imaging Camera (WIC) & Polar Ultraviolet Imager (UVI) LBHS & LBHL

Temporal resolution
WIC: 10 second integration every 2 minutes
UVI: 18 & 36 second integration, cyclic

Spatial resolution
WIC: ~ 50 km
UVI: ~ 30 km

Spectral resolution
WIC: 140 to 190 nm – LBHS: 140 to 160 nm – LBHL: 160 to 180 nm –
NH: enhanced, unstructured emission in afternoon
SH: multiple spots; number, location, and intensity change
4 November 2002

Northern Hemisphere

Southern Hemisphere

NH: enhanced, unstructured emission in afternoon
SH: multiple spots; number, location, and intensity change
NH: enhanced emission in afternoon; variable intensity and location; single region

SH: multiple regions of emission; vary in intensity and location; different regions behave differently

Steady solar wind density and velocity

IMF

$B_X < 0$

$B_Y > 0$

$B_Z < 0$ (with some positive excursions)
SuperDARN Ionospheric Velocity Data

NH: large velocities pre-noon; moderate velocities in afternoon
SH: poor coverage; crescent shaped cell in afternoon, large v?
Interpretation

For $B_Z < 0$, strong B_Y
⇒ mirror image convection patterns

Strong flow shear, divergent E_\perp, J_\perp, strong J_\parallel
⇒ more discrete auroral structure (brighter?)

⇒ Hemispheric asymmetry

(from Clauer et al.)
Why Multiple Spots?

“String of pearls” configuration is consistent with being the result of a Kelvin-Helmholtz Instability (KHI) [Lui et al., 1989; Rostoker et al., 1992; Wei and Lee, 1993]

- KHI occurs at velocity shear; assumed to occur at equator
- Multiple spots only in one hemisphere, not both as expected

⇒ KHI occurs at high latitude near the ionosphere (in crescent cell) and depends on $|B_Y/B_Z|$ [cf. Ridley and Clauer, 1996]
22 October 2002

Northern Hemisphere

Southern Hemisphere

NH: latitudinally narrow emission, brightens near 19:40 UT
SH: broader, more diffuse emission; no noticeable change
22 October 2002

Northern Hemisphere

Southern Hemisphere

NH: latitudinally narrow emission, brightens near 19:40 UT
SH: broader, more diffuse emission; no noticeable change
22 October 2002

NH: very quiet from 17:45 to 19:15 UT; brightening near 19:40 UT; narrow MLT range (peaked)

SH: aurora brightens near 19:30 UT; diffuse in latitude and MLT

Steady solar wind density and velocity

IMF \(B_X > 0 \)
\(B_Y < 0 \)
\(B_Z < 0, > 0, < 0 \)
2 November 2002

Northern Hemisphere

Southern Hemisphere

NH: Sudden brightening at 14:10 UT;
SH: No change
NH: Sudden brightening at 14:10 UT

SH: No change

> 30% drop in solar wind dynamic pressure (related to brightening?)

Large IMF $|\mathbf{B}|$

(note change in scale)

Change from $+Y$ dominated to $-X$ dominated (radial) IMF (related to brightening?)
SuperDARN Data

NH: Large increase in dayside velocities in eastward direction
Large increase in velocity shear → could increase FAC
Response to solar wind/IMF change?

SH: Good data coverage; no increase in dayside velocities
Complex change in convection pattern; stagnation point?
No auroral signature
Simultaneous widespread brightening (< 15 MLT to 18 MLT) in both hemispheres at 19:47 UT (relatively conjugate)
Simultaneous widespread brightening at 19:47 UT in both hemispheres

Other brightenings and structure (and lots of it) non-conjugate

Solar wind density constant; velocity large with minor variations

IMF $B_x < 0$
$B_y < 0$ (mostly)
$B_z > 0$ w/fluctuations
Summary

Prediction: For $B_Y > 0$, afternoon aurora more structured [brighter] in the southern hemisphere
For $B_Y < 0$, afternoon aurora more structured [brighter] in the northern hemisphere

2 November 2002:
Brightening in north aurora absent in south for $B_Y > 0$
→ Large decrease in dynamic pressure and IMF rotation

25 October 2002:
Sporadic brightenings in north and south for $B_Y < 0$
→ High solar wind velocity and large B_Z fluctuations

Seeing short-lived response to changes in solar wind and IMF and not quasi-steady state conditions observed on 4 November 2002
=> M-I system responds asymmetrically to solar wind variability