Horizontal Gradients in the Nighttime Ionosphere of Mars and Their Electromagnetic Consequences

M. O. Fillingim1, L. M. Peticolas1, R. J. Lillis1, D. A. Brain1, J. S. Halekas1, D. Lummerzheim2, and S. W. Bougher3

1Space Sciences Laboratory, University of California, Berkeley
2Geophysical Institute, University of Alaska, Fairbanks
3Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor

Chapman Conference on the Solar Wind Interaction with Mars
24 January 2008
San Diego, CA
Outline

Introduction
- Magnetic environment of nighttime ionosphere
- Previous observations: *In-situ* (precipitating electrons)
 - Radio occultation/Radar
- Previous modeling
- Goals and methodology

Results!
- Nighttime ionospheric electron density
- Ratios of gyro to collision frequencies
- Horizontal plasma pressure gradients

Consequences
- Currents, electric fields, Joule heating
Summary

• The complex magnetic topology at Mars allows solar wind (and accelerated) electrons to ionize the night side atmosphere in limited regions (cusps)

• This patchy distribution of ionization leads to large horizontal gradients in plasma pressure, $\nabla(nkT)$, which can drive plasma motion

• At altitudes where ions are collisionally coupled to the neutral atmosphere while electrons are not, plasma pressure gradients (and neutral winds) can drive an ionospheric dynamo

 \rightarrow horizontal currents, electric fields, Joule heating
Martian Magnetic Field and Cusps

- Mars has no global magnetic field, but it does have strong crustal fields.
- Cusps form where radial crustal fields connect to the IMF.
 - Solar wind has access to the night side atmosphere → ionization.
- Accelerated electrons, ionospheric structure, and aurora seen near cusps.
- Non-uniform global distribution of cusps (i.e., ionization) → “patchy”
Accelerated (Auroral) Electrons
(from Brain et al. [2006])

- MGS at 400 km at SZA ~ 125°
- Downward energy flux for **accelerated spectrum**
 10 X greater than that for **typical tail spectrum**
• Global distribution of peaked spectra (d\(j/dE > 0\)) found in MGS dataset
• Clustered around perimeter of closed field regions (contours) → cusps
• Wide range of energy fluxes – up to 40 X higher than previous example
• Accelerated electrons also seen by Mars Express [Lundin et al., 2006]
Observations of Night Side Ionosphere

<table>
<thead>
<tr>
<th>n_e^{max} (cm^{-3})</th>
<th>Altitude of n_e^{max} (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio occultation (RO) profiles</td>
<td></td>
</tr>
<tr>
<td>Mars 4 [Savich et al., 1976]</td>
<td>4.7 x 10^3</td>
</tr>
<tr>
<td>Viking 1 & 2 [Zhang et al., 1990]</td>
<td>5 x 10^3</td>
</tr>
<tr>
<td>(in all cases, solar zenith angle (SZA) ≤ ~ 125°)</td>
<td></td>
</tr>
<tr>
<td>Mars Express MARSIS Active Ionospheric Sounder (AIS) [Kirchner et al., 2006, 2007]</td>
<td></td>
</tr>
<tr>
<td>Non-magnetic regions (typical)</td>
<td>8 x 10^3</td>
</tr>
<tr>
<td>Magnetic regions (typical)</td>
<td>5 x 10^4</td>
</tr>
<tr>
<td>Both MARSIS AIS observations [Gurnett et al., 2005; Duru et al., 2006] and near-terminator (SZA ~ 90°) MGS RO profiles [Withers et al., 2005] show evidence of small-scale ionospheric structure associated with cusps → Patchy distribution of ionization consistent with particle measurements</td>
<td></td>
</tr>
</tbody>
</table>
Models of Night Side Ionosphere

<table>
<thead>
<tr>
<th>ne(_{\text{max}}) (cm(^{-3}))</th>
<th>Altitude of ne(_{\text{max}}) (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High altitude (~10,000 km) Phobos 2 HARP spectra</td>
<td></td>
</tr>
<tr>
<td>Magnetotail lobe [Verigin et al., 1991]</td>
<td>7 x 10(^3)</td>
</tr>
<tr>
<td>Magnetotail lobe [Haider et al., 1992]</td>
<td>1.2 x 10(^4)</td>
</tr>
<tr>
<td>Plasma sheet [Haider et al., 1992]</td>
<td>1.7 x 10(^4)</td>
</tr>
<tr>
<td>20 eV Maxwellian [Fox et al., 1993]</td>
<td>1.4 x 10(^4)</td>
</tr>
<tr>
<td>180 eV Gaussian [Fox et al., 1993]</td>
<td>1.9 x 10(^4)</td>
</tr>
</tbody>
</table>

| Low altitude (~400 km) MGS MAG/ER spectra |
Solar wind (<1 keV) [Haider et al., 2002]	5 x 10\(^3\)	140
Typical tail [Fillingim et al., 2007]	1.7 x 10\(^3\)	166
Accelerated [Fillingim et al., 2007]	5.7 x 10\(^3\)	156

- ne\(_{\text{max}}\) due to accelerated spectrum is ~ 3 X typical tail spectrum value
- Latitudinal width of enhanced ionization ~ 200 km
 → Consistent with observed small-scale ionospheric structure
Models of Night Side Ionosphere

<table>
<thead>
<tr>
<th>n_e^{max} (cm$^{-3}$)</th>
<th>Altitude of n_e^{max} (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High altitude (~10,000 km) Phobos 2 HARP spectra</td>
<td></td>
</tr>
<tr>
<td>- Magnetotail lobe \cite{Verigin1991}</td>
<td>7×10^3</td>
</tr>
<tr>
<td>- Magnetotail lobe \cite{Haider1992}</td>
<td>1.2×10^4</td>
</tr>
<tr>
<td>- Plasma sheet \cite{Haider1992}</td>
<td>1.7×10^4</td>
</tr>
<tr>
<td>- 20 eV Maxwellian \cite{Fox1993}</td>
<td>1.4×10^4</td>
</tr>
<tr>
<td>- 180 eV Gaussian \cite{Fox1993}</td>
<td>1.9×10^4</td>
</tr>
</tbody>
</table>

| Low altitude (~400 km) MGS MAG/ER spectra |
- Solar wind (< 1 keV) \cite{Haider2002}	5×10^3	140
- Typical tail \cite{Fillingim2007}	1.7×10^3	166
- Accelerated \cite{Fillingim2007}	5.7×10^3	156

- n_e^{max} due to accelerated spectrum is $\sim 3 \times$ typical tail spectrum value
- Latitudinal width of enhanced ionization ~ 200 km
 \Rightarrow Consistent with observed small-scale ionospheric structure
Goal & Methodology

• Large horizontal plasma pressure gradients are expected in the nighttime ionosphere due to the close proximity of magnetic cusps and plasma voids
 ➔ *What are the magnitudes of these gradients? and*
 ➔ *How do these gradients affect the ionospheric electrodynamics?*

• Calculate ionospheric electron density as a function of altitude and latitude using, as input, MGS observations coupled to an electron transport model – Mars Discrete Ordinante Transport (MDOT) Code
 • modification of multi-stream code of *Lummerzheim & Lilensten* [1994]
 • uses discrete-ordinante method to solve electron transport problem

• The electron density is determined from
 \[n_e(z) = \sqrt{P(z)/\alpha_{\text{eff}}(z)} \text{ cm}^{-3}, \]
 where \(P(z) \) is the ion production rate and \(\alpha_{\text{eff}}(z) \) is the recombination rate

• Since \(O_2^+ \) is the dominant ionospheric ion due to rapid chemical reactions,
 \[\alpha_{\text{eff}}(z) = O_2^+ \text{ recombination rate} = 1.95 \times 10^{-7} \left(300/T_e(z)\right)^{0.7} \text{ cm}^3 \text{ s}^{-1}, \]
 where \(T_e \) is the electron temperature

Assume: *all ions are \(O_2^+ \) and electron temperature = neutral temperature*
Neutral Atmosphere Profile (MTGCM)

[Bougher et al., 1999, 2000]

- Includes CO$_2$, CO, O$_2$, O, & N$_2$ (and Ar – but not included in transport model)
- Profile from 2.5° N at 3 AM LT under solar medium conditions at equinox
- Extrapolate above 250 km: assume diffusive equilibrium & isothermal profile
Electron Density

Electron energy flux spectrogram observed by MGS at 400 km altitude at 2 AM local time moving north to south.

Use electron data as input at upper boundary…
Electron Density

Electron energy flux spectrogram observed by MGS at 400 km altitude at 2 AM local time moving north to south.

Use electron data as input at upper boundary...

Modeled electron density as a function of altitude and latitude.

Peak $n_e^{\text{max}} = 3.1 \times 10^4 \text{ cm}^{-3}$

Peak TEC = $1.4 \times 10^{15} \text{ m}^{-2}$ = 0.14 TECU

> 10% of dayside values
Ionospheric Electrodynamics

Ratio of gyrofrequency to collision frequency, $f = \frac{\Omega}{\nu}$

For electrons,

$$f_e = \frac{\Omega_e}{\nu_{en}} \sim \frac{|B|}{n_n T_e^\alpha},$$

where $\alpha \approx 0.5 - 3$ depending upon neutral species

For ions (O_2^+ in this case),

$$f_i = \frac{\Omega_i}{\nu_{in}} \sim \frac{|B|}{n_n}$$

$f < 1$: collisions dominate

$f > 1$: magnetic field effects dominate

$f_e = 1$ at about 110 km

$f_i = 1$ at about 160 km
The altitude range where ions are collisionally coupled to the atmosphere but electrons are not coincides with the peak in ionospheric density:

\[j = ne(v_i - v_e) \]

Since plasma density, \(n \), and \((v_i - v_e) \) are large in this region, currents should also be large.
From the computed electron density \((n_i = n_e)\) and assumed temperature profile \((T_n = T_i = T_e)\), compute the horizontal plasma pressure gradient force, \(-1/n \nabla(nkT)\) (positive values point left)

Significant structure at low altitude (< 100 km);
\(n_e\) is low – little electrodynamic impact

Largest gradients near cusp-void interfaces
Consequences: Ionospheric Currents

- To determine ionospheric currents, start with simplified momentum equation assuming steady state conditions and all forces in equilibrium:

Ions: \[-1/n_i \nabla (n_i kT_i) + m_i g + e(E + \mathbf{V}_i \times \mathbf{B}) - m_i \nu_{in}(\mathbf{v}_i - \mathbf{u}) = 0\]
Electrons: \[-1/n_e \nabla (n_e kT_e) + m_e g - e(E + \mathbf{V}_e \times \mathbf{B}) - m_e \nu_{en}(\mathbf{v}_e - \mathbf{u}) = 0\]

- First, consider only the pressure gradient term:
 let \(\nabla \rightarrow d/dx \); ignore \(E, u \); and assume \(B = B_Z \)

- Then,
 \[v_{ix} = -1/n_i \nabla (n_i kT_i) \nu_{in}/m_i(\Omega^2_i + \nu_{in}^2); \quad v_{iy} = -(\Omega_i/\nu_{in}) v_{ix}\]
 \[v_{ex} = -1/n_e \nabla (n_e kT_e) \nu_{en}/m_i(\Omega^2_e + \nu_{en}^2); \quad v_{ey} = (\Omega_i/\nu_{in}) v_{ex}\]

- By using
 \[j = ne(\mathbf{v}_i - \mathbf{v}_e)\]
 we can compute \(j_x \) and \(j_y \)...
Current Density due to ∇P

X- (top) and Y- (bottom) components of ionospheric currents driven by latitudinal pressure gradients

Largest gradients occur at cusp-void interfaces; hence, largest currents found in these regions

Currents flow toward low density voids and outward from high density cusps

Longitudinal currents flow along cusp boundaries
Current Density due to Neutral Winds

X- (top) and Y- (bottom) components of currents driven by latitudinal neutral wind:
\[u_x = 100 \text{ m/s northward} \]

In high density regions, ion drag leads to large northward currents (~ 100 times larger than \(\nabla P \) currents)

In these same regions, longitudinal (Hall-like) currents flow as electrons drift in the \(-F \times B\) direction where
\[F = F_x = m v_{e,n} u_x \]
Current Density due to Neutral Winds

X- (top) and Y- (bottom) components of currents driven by longitudinal neutral wind:

\[u_y = 100 \text{ m/s} \textbf{westward} \]

Again, ion drag leads to large westward currents, \(j_y \)

Now, latitudinal (Hall-like) currents flow outward away from void (or inward toward void depending upon orientation of \(\mathbf{B} \))
Summary

• Using MGS data as input to an electron transport model, we have calculated the nighttime ionospheric electron density as a function of altitude and latitude over strong field regions (cusps and voids)

• Horizontal plasma pressure gradients are a result of spatially inhomogeneous magnetic field structure and spatially inhomogeneous precipitating electron energy spectra

• In regions where ions are collisionally coupled to the atmosphere while the electrons are not, these gradients drive ionospheric currents

• Horizontal winds also generate (much larger) horizontal currents
 ➔ Small scale \mathbf{B} structure \rightarrow small scale ionization \rightarrow small scale currents

• These currents will generate polarization electric fields; also external magnetospheric electric fields may be imposed (like at Earth)

• Where $\mathbf{J} \cdot \mathbf{E} > 0$, Joule heating can locally modify atmospheric dynamics and chemistry in the ionosphere/thermosphere/exosphere system
Things We Have Not Addressed

• Electron transport model does not include magnetic gradients; assumes magnetic field lines are straight with a constant dip angle and magnitude
 → Bad assumptions at Mars (plan to incorporate Monte-Carlo code that includes realistic magnetic field profiles)

• Calculations assume $T_n = T_i = T_e$
 → Not too unreasonable at low altitudes where collisions are common; unreasonable at high altitudes where typically $T_n < T_i < T_e$
 → Underestimate n_e, ∇P, v_{en}, and j at high altitude

• So far, we have neglected effects of polarization and external electric fields
• We have not considered parallel current (= divergence of horizontal current)
• Ionospheric currents can modify magnetic field [Withers et al., 2005]
• What is needed to more adequately address these problems?
 → More complete, self-consistent, 2.5- to 3-D model of the electrodynamics of the nighttime ionosphere of Mars (under development)