On Wind-Driven Electrojets at Magnetic Cusps in the **Nightside Ionosphere of Mars**

<u>M. O. Fillingim¹</u>, R. J. Lillis¹, S. L. England¹, L. M. Peticolas¹, D. A. Brain¹, J. S. Halekas¹, C. Paty², D. Lummerzheim³, and S. W. Bougher⁴

¹Space Sciences Laboratory, University of California, Berkeley ²School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta

³Geophysical Institute, University of Alaska, Fairbanks

⁴Department of Atmospheric, Oceanic and Space Sciences,

University of Michigan, Ann Arbor

<u>Outline</u>

Summary

Martian Magnetic Fields and Cusps

Martian Ionospheric Dynamo

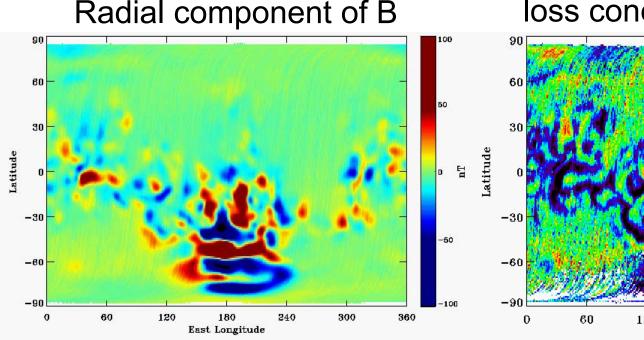
Martian Ionospheric Currents

Terrestrial Auroral Electrojets

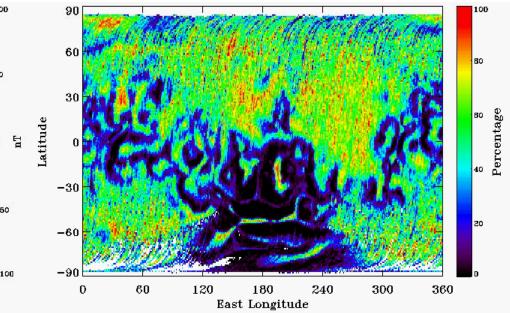
Martian Auroral Electrojets

Variability

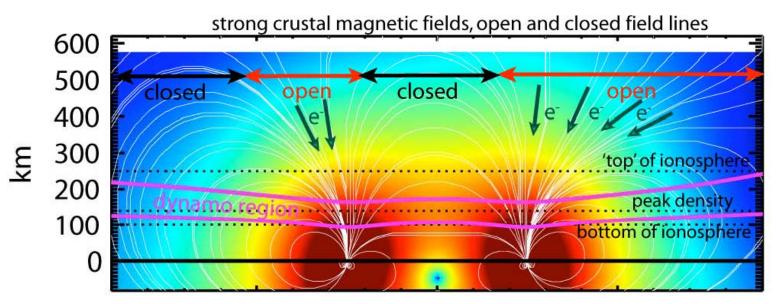
Caveats/Assumptions/Simplifications


Summary

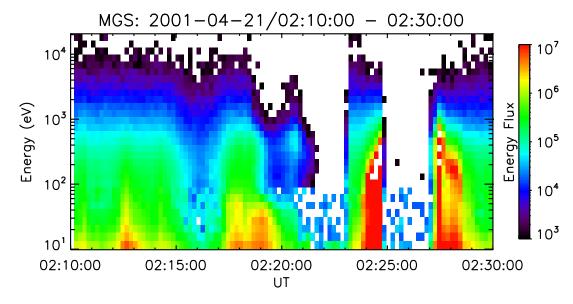
<u>Summary</u>


- The complex magnetic topology at Mars allows solar wind (and accelerated) electrons to ionize the nightside atmosphere in limited regions (cusps) forming a patchy nightside ionosphere
- Neutral winds drive ionospheric currents at altitudes where ions are collisionally coupled to the neutral atmosphere while electrons are magnetized → <u>dynamo region</u>
- Inhomogeneities in the ionospheric conductivity lead to polarization electric fields and secondary ionospheric currents – secondary currents can reinforce original currents forming <u>electrojets</u>
- The magnetic signatures of electrojets can be measured from orbit and from the surface

Martian Magnetic Fields and Cusps


- No global magnetic field <u>but</u> strong crustal fields
- Cusps form where radial crustal fields connect to the IMF
 → solar wind has access to the atmosphere → ionization
- Non-uniform global distribution of cusps and ionization
- <u>Accelerated electrons</u>, <u>ionospheric structure</u>, and <u>aurora</u> associated with cusps
 Probability of observence

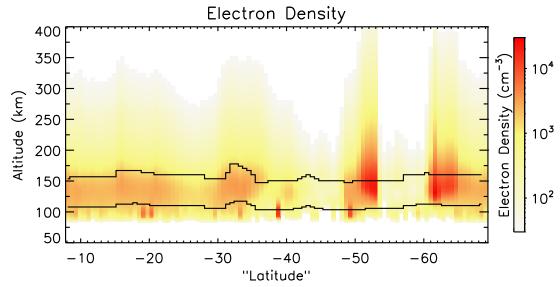
Probability of observing loss cones on the nightside


Martian Ionospheric Dynamo

- Ionospheric currents exist where ions are collisional ($\Omega_i < v_{in}$) but electrons are magnetized ($\Omega_e > v_{en}$) $\rightarrow \underline{dynamo\ region}$
- Crustal magnetic fields alter the ionospheric electrodynamics
- The altitude of the dynamo is geographically dependent
- Currents vary on the same spatial scales as the crustal fields do at ionospheric altitudes (~ 100 – 600 km)

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

1. Start with observed electron energy spectra


Electron spectrogram observed by Mars Global Surveyor on the nightside at 400 km Regions of accelerated electrons (at cusps) & "voids" of few electrons

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

- 1. Start with observed electron energy spectra
- 2. Calculate ionization rate
- → neutral atmosphere (MTGCM) of Bougher *et al.* [2009]
- → electron transport code of Lummerzheim & Lilensten [1994]
- → magnetic field model of Cain et al. [2003] (path length)

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

- 1. Start with observed electron energy spectra
- 2. Calculate ionization rate
- 3. Compute resulting electron density, n_e
- → assume photochemical equilibrium, i.e., $n_e(z) = \sqrt{P(z)/\alpha_{eff}(z)}$
- → assume all ions are O_2^+ , $\alpha_{eff}(z)$ is O_2^+ recombination rate
- \rightarrow electron temperature, T_e, is equal to measured daytime T_e

Computed n_e versus altitude and latitude

 Black lines bound dynamo region →
 currents coincide with ionospheric peak

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

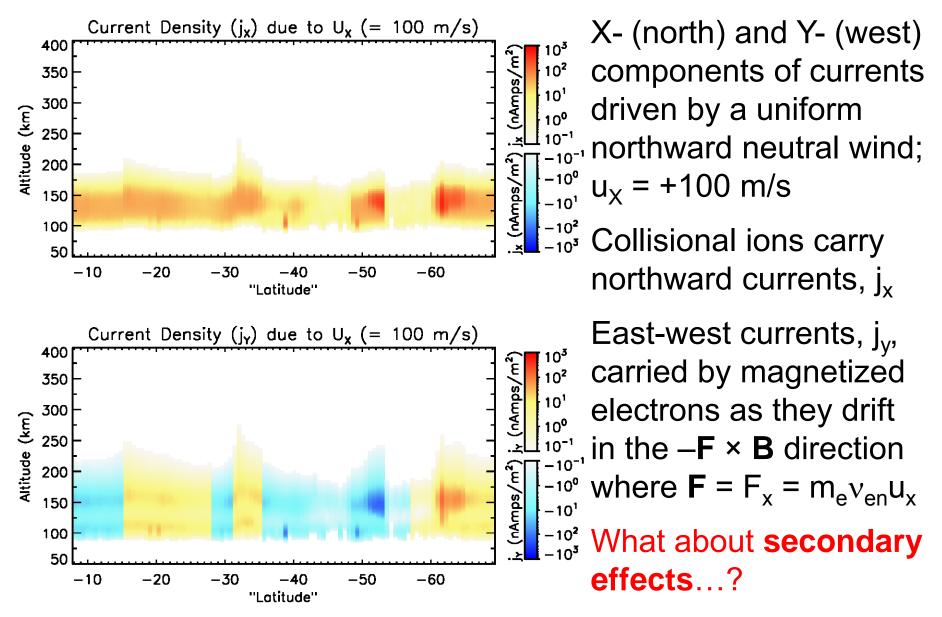
- 1. Start with observed electron energy spectra
- 2. Calculate ionization rate
- 3. Compute resulting electron density, n_e
- 4. Add external force \rightarrow neutral winds (u_x = 100 m/s northward)

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

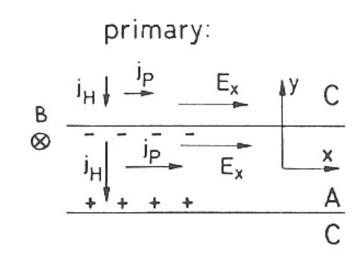
- 1. Start with observed electron energy spectra
- 2. Calculate ionization rate
- 3. Compute resulting electron density, n_e
- 4. Add external force \rightarrow neutral winds (u_x = 100 m/s northward)
- 5. From equations of motion, calculate particle velocities, $v_{i,e}$

$$\begin{array}{ll} -1/n_{i,e} \, \nabla(n_{i,e} k T_{i,e}) + m_{i,e} \mathbf{g} + q(\mathbf{E} + \mathbf{v}_{i,e} \times \mathbf{B}) - m_{i,e} v_{in,en} (\mathbf{v}_{i,e} - \mathbf{u}) = 0 \\ \text{pressure} & \text{gravity electric magnetic} & \text{collisions with} \\ \text{gradient} & \text{field} & \text{field} & \text{neutrals} \end{array}$$

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

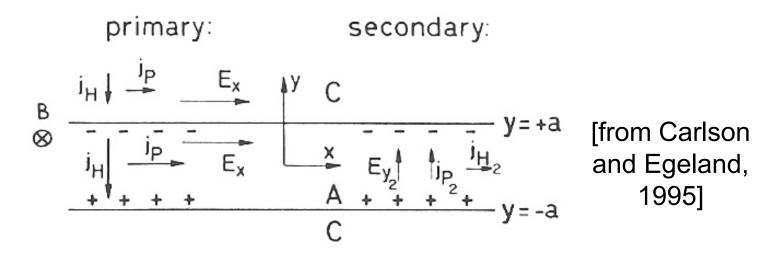

- 1. Start with observed electron energy spectra
- 2. Calculate ionization rate
- 3. Compute resulting electron density, n_e
- 4. Add external force \rightarrow neutral winds (u_x = 100 m/s northward)
- 5. From equations of motion, calculate particle velocities, v_{i,e}

$$\begin{array}{ll} -1/n_{i,e} \, \nabla(n_{i,e} k T_{i,e}) + m_{i,e} \mathbf{g} + q(\mathbf{E} + (\mathbf{v}_{i,e} \times \mathbf{B}) - (m_{i,e} v_{in,en} (\mathbf{v}_{i,e} - \mathbf{u})) = 0 \\ \text{pressure} & \text{gravity electric magnetic} & \text{collisions with} \\ \text{gradient} & \text{field} & \text{field} & \text{neutrals} \end{array}$$

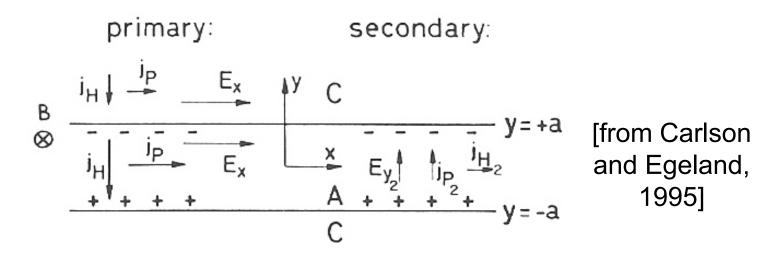

* Assume $\mathbf{B} = B_Z$ and $\mathbf{u} = u_X$

(see Fillingim et al. (2010), Icarus, 206(1), pp. 112-119.)

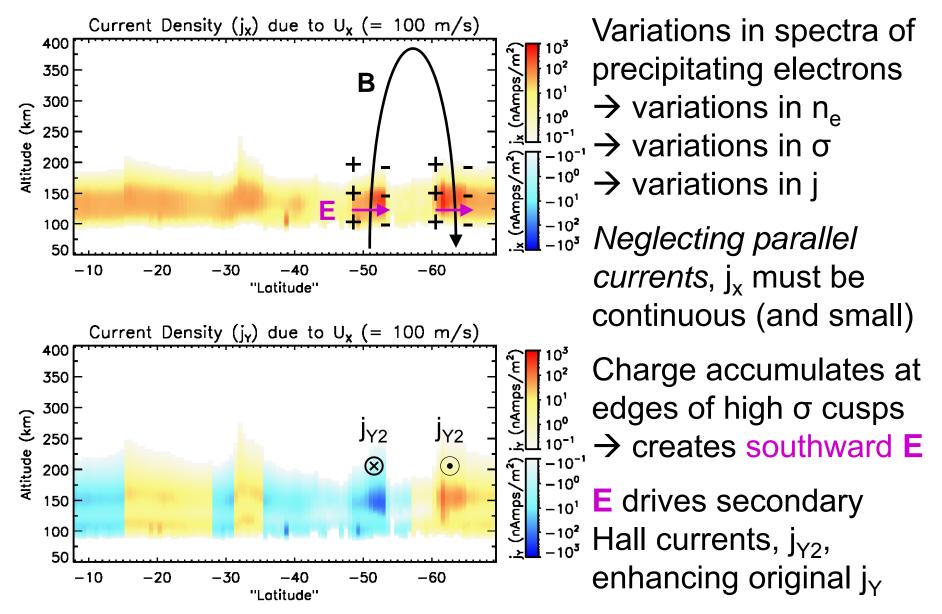
- 1. Start with observed electron energy spectra
- 2. Calculate ionization rate
- 3. Compute resulting electron density, n_e
- 4. Add external force \rightarrow neutral winds (u_x = 100 m/s northward)
- 5. From equations of motion, calculate particle velocities, $v_{i,e}$
- 6. Calculate currents: $\mathbf{j} = nq(\mathbf{v}_i \mathbf{v}_e)$


Terrestrial Auroral Electrojets

[from Carlson and Egeland, 1995]

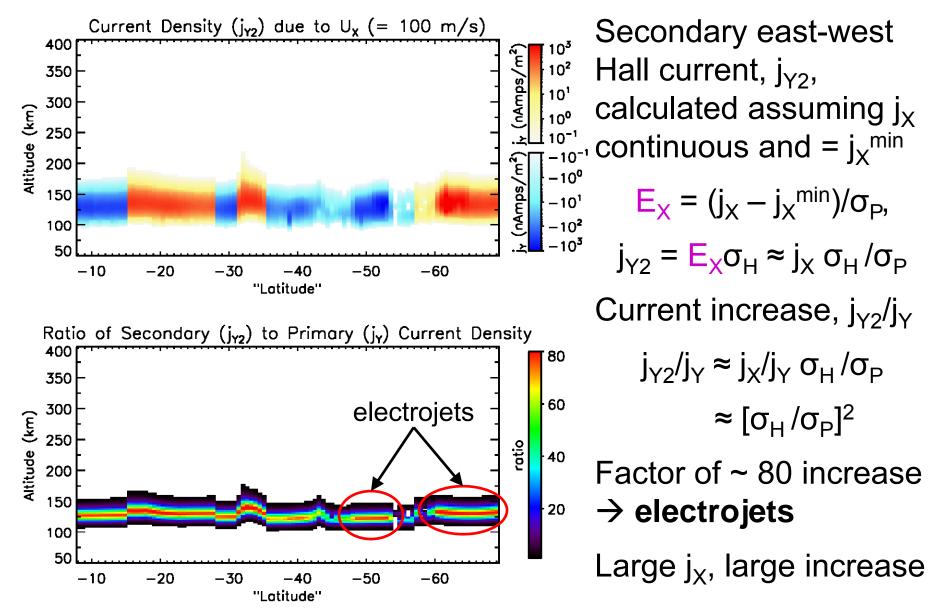

- Particle precipitation (i.e., aurora) can create a channel of enhanced ionization and enhanced conductivity, σ (region A)
- An external force (electric field, E,) drives ionospheric currents
- Collisional ions carry current parallel to E: Pedersen current, j_P
- Magnetized electrons carry current perpendicular to both E and B: Hall current, j_H
- Currents in region A are stronger due to higher conductivity \rightarrow difference in j_H leads to charge accumulation at the edges of A

Terrestrial Auroral Electrojets


- Charge separation creates a secondary electric field, E_{y2} , which drives secondary Pedersen and Hall currents, j_{P2} and j_{H2}
- j_{P2} partially cancels j_H in region A
 → current continuity in y-direction across A-C boundary
- j_{H2} adds to j_P enhancing original current \rightarrow electrojet
- Can an analogous situation occur in the nightside ionosphere of Mars...?

Terrestrial Auroral Electrojets

- Charge separation creates a secondary electric field, E_{y2} , which drives secondary Pedersen and Hall currents, j_{P2} and j_{H2}
- j_{P2} partially cancels j_H in region A
 → current continuity in y-direction across A-C boundary
- j_{H2} adds to j_P enhancing original current \rightarrow electrojet
- Can an analogous situation occur in the nightside ionosphere of Mars...?
- Yes in magnetic cusps!


Martian Auroral Electrojets

Martian Auroral Electrojets

Martian Auroral Electrojets

Martian Auroral Electrojets Total Current Density (j_{yT}) due to U_x (= 100 m/s) Total current density 400 10^{3} (nAmps/m² $j_{YT} = j_{Y} + j_{Y2}$ 10² 350 101 300 Altitude (km) 100 Solve Biot-Savart Law 250 $^{-10^{-1}}_{-10^{\circ}}$ to find ΔB due to j_{YT} (nAmps/m²) 200 150 -10^{1} Max j_{YT} at -50 & -65°; -10² 100 -10^{3} $\max \Delta B$ in region 50 -20 -60 -10-30-50-40 "Latitude" between -50 – -65° Total Current Density (j_{YT}) due to U_x (= 100 m/s) at 400 km, ΔB ≈ 10 nT, 400 10³ (nAmps/m 10² 350 B_{ambient} ≈ 100 nT (10%) · 10¹ 300 Altitude (km) 10⁰ at 150 km, ΔB ≈ 50 nT, 250 10⁻¹ -10-1 (nAmps/m²) 200 B_{ambient} ≈ 500 nT (10%) -10⁰ 150 -10^{1} at surface, $\Delta B \approx 10$ nT, -10^{2} -10^{3} 100 50 B_{ambient} > 1000 nT (1%) -20 -30-60 -10-40 -50"Latitude"

Variability

 Wind driven electrojets are variable; periodic changes in conductivity gradients and neutral wind speed and direction affect intensity of electrojets

• <u>Diurnal</u>:

- In sunlight, conductivity gradients are weaker (solar EUV) →
 j_X is "more continuous" → weaker electrojets
- Wind patterns change with local time [Bougher *et al.*, 2000] northward winds in southern hemisphere pre-midnight; westward wind post-midnight → weaker electrojets

• <u>Seasonal</u>:

 Nightside wind patterns also change with season northward winds at equinox and southern summer solstice; eastward winds at northern summer solstice → weaker EJ

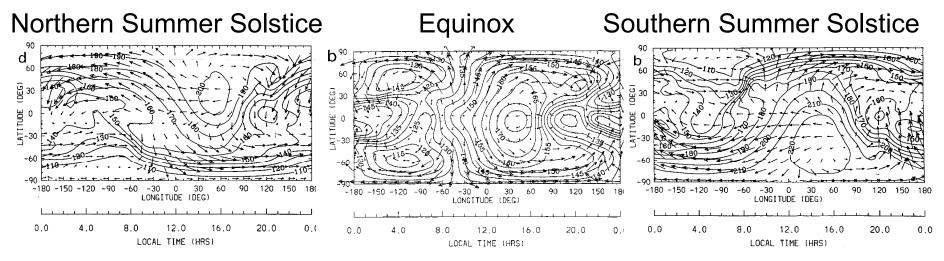
Variability

• Wind driven elec 90 b conductivity gr gg 30 affect intensity

• Diurnal:

ed and direction -60 er (solar EUV) → • In sunlight, cc -30 0 30 LONGITUDE (DEG) 150 180 -90 -60 150 -120 j_x is "more con 0.0 4.0 12.016.0 20.0 0.0 LOCAL TIME (HRS)

changes in

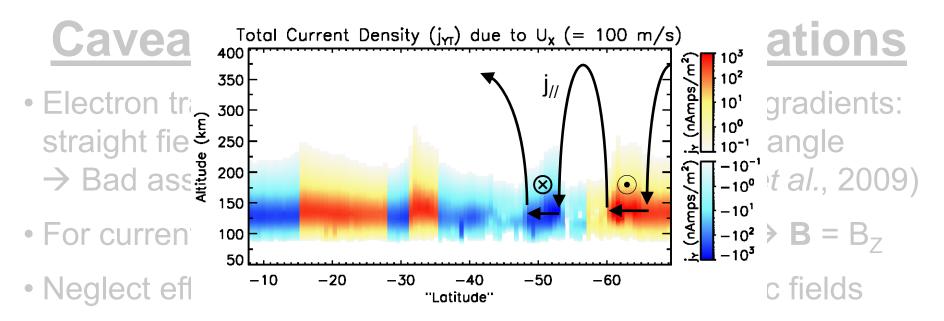

• Wind patterns change with **local time** [Bougher et al., 2000] northward winds in southern hemisphere pre-midnight; westward wind post-midnight \rightarrow weaker electrojets

• Seasonal:

 Nightside wind patterns also change with season northward winds at equinox and southern summer solstice; eastward winds at northern summer solstice \rightarrow weaker EJ

Variability

 Wind driven electrojets are variable; periodic changes in conductivity gradients and neutral wind speed and direction affect intensity of electrojets



<u>Seasonal</u>:

 Nightside wind patterns also change with season northward winds at equinox and southern summer solstice; eastward winds at northern summer solstice → weaker EJ

Caveats/Assumptions/Simplifications

- Electron transport code does not include magnetic gradients: straight field lines with constant magnitude and dip angle
 → Bad assumption for anisotropic electrons (Lillis *et al.*, 2009)
- For current calculations, use unrealistic geometry \rightarrow **B** = B_Z
- Neglect effects of external (magnetospheric) electric fields
- Ignore (observed) parallel currents: j_{//} ~ 0.5 1 µA/m² [Brain *et al.*, 2006; Halekas *et al.*, 2006]
 j_{//} will decrease – but not nullify – magnitude of electrojets
 → 3-D current system analogous to Earth's auroral region
- Currents modify magnetic field (which modify currents...)
- What is needed to more adequately address these problems?
 → Geometrically accurate, self-consistent, 3-D model of the electrodynamics of the Martian ionosphere (see Poster 41)

- Ignore (observed) parallel currents: j_{//} ~ 0.5 1 µA/m² [Brain *et al.*, 2006; Halekas *et al.*, 2006]
 j_{//} will decrease – but not nullify – magnitude of electrojets
 → 3-D current system analogous to Earth's auroral region
- Currents modify magnetic field (which modify currents...)
- What is needed to more adequately address these problems?
 → Geometrically accurate, self-consistent, 3-D model of the electrodynamics of the Martian ionosphere (see Poster 41)

Caveats/Assumptions/Simplifications

- Electron transport code does not include magnetic gradients: straight field lines with constant magnitude and dip angle
 → Bad assumption for anisotropic electrons (Lillis *et al.*, 2009)
- For current calculations, use unrealistic geometry \rightarrow **B** = B_Z
- Neglect effects of external (magnetospheric) electric fields
- Ignore (observed) parallel currents: j_{//} ~ 0.5 1 µA/m² [Brain *et al.*, 2006; Halekas *et al.*, 2006]
 j_{//} will decrease – but not nullify – magnitude of electrojets
 → 3-D current system analogous to Earth's auroral region
- Currents modify magnetic field (which modify currents...)
- What is needed to more adequately address these problems?
 → Geometrically accurate, self-consistent, 3-D model of the electrodynamics of the Martian ionosphere (see Poster 41)

<u>Summary</u>

- The complex magnetic topology at Mars allows solar wind (and accelerated) electrons to ionize the nightside atmosphere in limited regions (cusps) forming a patchy nightside ionosphere
- Neutral winds drive ionospheric currents at altitudes where ions are collisionally coupled to the neutral atmosphere while electrons are magnetized → <u>dynamo region</u>
- Inhomogeneities in the ionospheric conductivity lead to polarization electric fields and secondary ionospheric currents – secondary currents can reinforce original currents forming <u>electrojets</u>
- The magnetic signatures of electrojets can be measured from orbit and from the surface