Session MG1-P163 EPSC-DPS2011-1694

Electric Field-Driven

Currents in the lonosphere of Mars

<u>Abstract</u>

- Previously, we modelled the nightside ionosphere of Mars using precipitating particle data as input to an electron transport model [Fillingim *et al.*, 2007]
- We also calculated horizontal ionospheric currents driven by

<u>M. O. Fillingim¹ (matt@ssl.berkeley.edu</u>), R. J. Lillis¹, Y. Ma²

¹Space Sciences Laboratory, University of California, Berkeley

²Institute of Geophysics and Planetary Physics, University of California, Los Angeles

Methodology and Results

- Perform a similar calculation driven by an externally imposed electric field, **E**, based on Ma *et al.*'s [2004] MHD simulation
- (Grossly over-) Simplifying assumptions:
- magnetic field is vertical (B = B_z) and constant with altitude
 magnetic field lines are equipotentials

thermospheric neutral winds [Fillingim et al., 2010]

- Additionally, we estimated the strength of wind-driven electrojets at magnetic cusps created by polarization electric fields formed in the presence of conductivity gradients [Fillingim *et al.*, 2011, in press]
- Here, we extend this previous work by considering ionospheric currents driven by external electric fields
- In the absence of electric field observations, we use the electric field calculated from a global MHD model

Introduction and Previous Work

Start with observed electron energy spectra

- → electric field is horizontal and constant with altitude
 electric field is constant with latitude on the nightside
 (actually, E varies with latitude, longitude, and time)
- Consider two cases: $\mathbf{E} = E_x = 0.01 \text{ mV/m}$ (northward field)

• Case 2: $\mathbf{E} = E_{\gamma} = 0.01 \text{ mV/m}$ (westward electric field)

• In both cases, we see two peaks in the Pedersen current as a function of altitude (cf. Opgenoorth et al., 2010) and a

UZ.10.00 02.13.00 02.20.00 02.23.00 02.30.00

Calculate ionization rate (Lummerzheim & Lilensten [1994])
→ neutral atmosphere (MTGCM of Bougher *et al.* [2009])
→ magnetic field model (Cain *et al.* [2003])

• Compute electron density assuming photochem. equilibrium $\rightarrow n_e = \sqrt{P(z)/\alpha_{eff}(z)}$, where $\alpha_{eff}(z)$ is O_2^+ recombination rate

- Add external force (e.g., neutral wind, electric field)
- Calculate particle velocities, $\mathbf{v}_{i,e}$, from equations of motion $\rightarrow 1/n_{i,e}\nabla(n_{i,e}kT_{i,e}) + m_{i,e}\mathbf{g} + q(\mathbf{E} + \mathbf{v}_{i,e} \times \mathbf{B}) - m_{i,e}v_{in,en}(\mathbf{v}_{i,e} - \mathbf{u}) = 0$

- change in sign of the Hall current as the polarity of **B** changes
- If we assume $j_{//} = 0$, then in steady state $\nabla \cdot \mathbf{j}_{\perp} = 0 \rightarrow dj_{\chi}/dx = 0$ \rightarrow gradients in conductivity lead to gradients in j_{χ}
 - \rightarrow polarization electric fields balance j_x, induce secondary j_{Y2}
- For Case 1, the secondary j_{Y2} (nearly) cancels the primary j_Y

• For Case 2, j_{Y2} strongly reinforces $j_Y \rightarrow$ "auroral" electrojets

• If we **do not** assume $j_{//} = 0$, then $\nabla J_{\perp} = dJ_{\chi}/dx = j_{//}$ where J_{χ} is the height-integrated current

• Parallel current near cusps \rightarrow may play a role in acceleration

• All cases have significant Joule heating ($J \cdot E > 0$) except for Case 1 with polarization electric fields; $j_{//} = 0$ and j_x , $E_x \rightarrow 0$

• Assuming \mathbf{j}_{\perp} constant across conductivity gradients and $\mathbf{j}_{//} = 0$ $\rightarrow \mathbf{E}_{\perp 1}' = \Delta \mathbf{j}_{\perp 1} / \sigma_{\mathbf{P}}; \mathbf{j}_{\mathbf{H} \perp 2}' = \mathbf{E}_{\perp 1}' \sigma_{\mathbf{H}} = \Delta \mathbf{j}_{\perp 1} \sigma_{\mathbf{H}} / \sigma_{\mathbf{P}}; \mathbf{j}_{\mathbf{H} \perp 2}' / \mathbf{j}_{\perp 2} \approx \sigma_{\mathbf{H}}^{2} / \sigma_{\mathbf{P}}^{2}$

