Observation of Cosmic Ray Spallation Events from SoHO

From RHESSI Wiki

Revision as of 21:50, 29 April 2018 by Hhudson (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


Nugget
Number: 322
1st Author: Serge Koutchmy
2nd Author: Ehsan Tavabi
Published: 7 May 2018
Next Nugget: TBD
Previous Nugget: First Cycle 25 Sunspot
List all



Contents

Introduction

The cosmic ray Galactic cosmic rays constitute a major component of the Universe, and consist of ultrarelativistic particles in a broad power-law spectrum with an almost isotropic distribution. Their significance can be judged from the fact that their energy density in interstellar space exceeds that of starlight or the [microwave background]. When a cosmic-ray particle arrives at the top of Earth's atmosphere, it will interact with the nucleus of an atom in the air, likely to be N or O, and produce a shower of secondary particles at tens of km altitude. Typically, this first interaction is often a nuclear reaction known as a spallation reaction, in which the target nucleus disrupts into various components, all themselves with high energies. The primary cosmic rays themselves can never be directly measured except outside the Earth's atmosphere because of these interactions. The cosmic rays approach the Earth and other planets in a complex pattern of [rigidity] dependence, depending on the particle's momentum and the magnetic field strength. At the highest particle energies the primary particles ignore the magnetic field, though, and propagate almost on straight lines.

Such very high-energy particles can also initiate showers in the CCD detectors of the LASCO instrument of the ESA/NASA Solar-Heliosphysical Observatory (SoHO). In such a case the image shows the tracks of various secondary particles resulting from the initial spallation reaction may appear in the snapshot image recorded by the CCD image detector. We have found many LASCO images with such records, as described here and in much more detail in Ref. [1].

Distinguishing SEPs from Cosmic Rays

Solar cosmic rays are nowadays termed SEPs, for Solar Energetic Particles, and their observation is a major component of space weather, the science (and engineering) involved in dealing with solar disturbances of the Earth and nearby space. These solar particles are roughly the same as Galactic cosmic rays (GCRs), except having different energy spectra, huge time variations, and at certain times, much greater numbers. Figure 1 illustrates the "snowstorm" effect a major solar particle event can have on the LASCO CCDs.

Figure 1: The "snowstorm" appearance of SEP interactions with the LASCO CCDs, as seen for the famous "Bastille Day"] flare of 2014, SOL2000-07-14.

The very numerous interactions mostly appear as dots, since an SEP will generally penetrate the detector more and not interact; most particles will not be arriving parallel to the surface of the detector, but when they do they will leave tracks of varying lengths, as seen in many places in Figure 1.

These events are interesting, but even more interesting are the spallation events produced by the much higher-energy GCR primaries. One of SoHO's best examples is shown in Figure 2.

Figure 2: The spallation event seen by LASCO at 11:30 UT on 29 November 2015. Left, the LASCO image without the usual processing to display the solar corona, its primary purpose; right, a blowup of the spallation site within the CCD. We interpret the very long track extending to the left as the incoming particle, which in this unusual case was almost perfectly tangential to the flat surface of the CCD.

The "star" of secondary particles appearing at the vertex of the event (the right panel) probably only represents a fraction of all the secondaries from this violent interaction; most of them would have escaped from the tiny volume of the CCD pixel (only 60 microns thick) and not left a track. Many aspects of this event point to a primary particle energy on the order of 1014 eV in energy (100 TeV). Such an energetic particle would, in the Earth's atmosphere, typically launch an extensive air shower.

Discussion

References

[1] "Observation of galactic cosmic ray spallation events from the SoHO mission 20-Year operation of LASCO"

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox