BARREL Balloon Observations and History

From RHESSI Wiki

(Difference between revisions)
Jump to: navigation, search
 
(8 intermediate revisions not shown)
Line 4: Line 4:
|first_author = Greg Bowers
|first_author = Greg Bowers
|second_author = Alexa Halford
|second_author = Alexa Halford
 +
|third_author = Sara McGregor
|publish_date = February 17, 2014
|publish_date = February 17, 2014
|previous_nugget = [[Instantaneous Flare Properties]]
|previous_nugget = [[Instantaneous Flare Properties]]
Line 13: Line 14:
Solar hard X-rays and gamma-rays were discovered in the middle of the  
Solar hard X-rays and gamma-rays were discovered in the middle of the  
-
last century via balloon-borne instruments [Ref. 1].
+
last century via balloon-borne instruments [Ref. 1] deployed by the Minnesota
 +
physicists
 +
[https://en.wikipedia.org/wiki/Laurence_E._Peterson L.E. Peterson] and
 +
[https://en.wikipedia.org/wiki/John_R._Winckler J.R. Winckler]; the latter
 +
also discovered
 +
[https://en.wikipedia.org/wiki/Sprite_(lightning) sprites].
By modern naming convention, we'd call their flare SOL1958-03-20T13:05,  
By modern naming convention, we'd call their flare SOL1958-03-20T13:05,  
but it preceded any useful soft X-ray observations and so there is no
but it preceded any useful soft X-ray observations and so there is no
Line 27: Line 33:
the balloon.
the balloon.
-
In this Nugget we report recent balloon-borne observations from multiple
+
In this Nugget we show how a recent Antarctic multi-balloon mission,
-
balloons of the
+
[http://relativisticballoons.blogspot.co.uk/ BARREL] has also been able to observe some types of solar activity.
-
[http://relativisticballoons.blogspot.co.uk/ BARREL]
+
-
expedition to the Antarctic.
+
[http://www.dartmouth.edu/~physics/people/faculty/millan.html Robyn MIllan]
[http://www.dartmouth.edu/~physics/people/faculty/millan.html Robyn MIllan]
of Dartmouth College is the lead scientist of this ambitious experiment.
of Dartmouth College is the lead scientist of this ambitious experiment.
As with the original Peterson-Winckler experiment, BARREL wasn't designed
As with the original Peterson-Winckler experiment, BARREL wasn't designed
-
to study solar flares, but their signals come through loud and clear
+
to study solar activity, but some of these signals from the Sun come through loud and clear.
-
anyway.
+
BARREL's primary mission is to study the loss of electrons to the upper atmosphere from the Earth's  
-
BARREL's instrumentation allows it to study the precipitation of  
+
[https://en.wikipedia.org/wiki/Van_Allen_radiation_belt Van Allen Belts].
-
relativistic electrons from the Earth's  
+
-
[https://en.wikipedia.org/wiki/Van_Allen_radiation_belt Van Allen Belts],
+
-
which indeed may share some kinds of
+
-
[https://en.wikipedia.org/wiki/Astrophysical_plasma plasma physics]
+
-
with what happens in a
+
-
[http://www.scholarpedia.org/article/Solar_activity solar flare].
+
== How BARREL Works ==
== How BARREL Works ==
-
A stream of small balloons circles the Antarctic continent, following
+
A stream of small balloons, 1 - 8 at any given time, circle the Antarctic continent, following
the [https://en.wikipedia.org/wiki/Polar_vortex vortex winds]  
the [https://en.wikipedia.org/wiki/Polar_vortex vortex winds]  
-
at high altitudes in the polar regions.
+
at high altitudes in the polar regions. These payloads are launched from two stations; [http://en.wikipedia.org/wiki/SANAE SANAE IV] and [http://en.wikipedia.org/wiki/Halley_Research_Station Halley 6].  Power comes from solar cells, and data is retrieved over the iridium satellite network to an automated real-time webpage,
-
At any one time several balloons can fly simultaneously, strung out around
+
allowing the ground-based scientists to follow along. These multi-point measurements allow us to better determine temporal and spatial structures in the radiation belts.
-
the Antarctic according to their time of launch.
+
A
-
Power comes from solar cells, and full-time communication via the Iridium
+
[http://www.nasa.gov/content/goddard/nasa-funded-science-balloons-launch-in-antarctica/#.UwJH_yj5Q-Y video
-
satellite network and an automated connection to a real-time webpage,
+
describing the BARREL Mission along with a NASA blurb] goes into more detail than we do here in this nugget.
-
allowing the ground-based scientists to follow along.
+
A picture of one of the BARREL launches can be seen in Figure 1, taken from the South African Antarctic station  
-
For radiation-belt studies, multi-point measurements mean much better
+
[https://en.wikipedia.org/wiki/SANAE_IV SANAE] shortly after launch.
-
science.
+
-
A rather fine
+
-
[http://www.nasa.gov/content/goddard/nasa-funded-science-balloons-launch-in-antarctica/#.UwJH_yj5Q-Y video]
+
-
describes the basic program better than we can here.
+
-
We do show a pretty picture here in Figure 1, though, taken at the launch of a BARREL
+
-
balloon from the South African Antarctic station  
+
-
[https://en.wikipedia.org/wiki/SANAE_IV SANAE].
+
[[File:219f1.png|800px|thumb|center|Fig. 1:  
[[File:219f1.png|800px|thumb|center|Fig. 1:  
A BARREL balloon shortly after launch (view from below).
A BARREL balloon shortly after launch (view from below).
One can see the balloon billowing out, still far from inflated since
One can see the balloon billowing out, still far from inflated since
-
it is just after launch; the red parachute, furled, and the payload itself.
+
it is just after launch; the orange parachute, furled, and the payload itself.
-
The payload itself weighs only about 20 kg, and is whisked eventually
+
The payload itself weighs only about 20 kg, and is whisked
-
up to 30-35 km, well above 99% of the Earth's atmosphere.
+
up to 30-35 km, into the stratosphere within a couple of hours.
The balloon can maintain this altitude for the time it takes to  
The balloon can maintain this altitude for the time it takes to  
circumnavigate the globe, albeit at very  
circumnavigate the globe, albeit at very  
-
[https://en.wikipedia.org/wiki/SANAE_IV high latitude].
+
[http://barrelscience.blogspot.com/2014/01/hi-all-2t-after-22-days-afloat-has-been.html high latitude].
]]
]]
-
The instrumentation on each BARREL payload consists of a simple isotropic
+
The instrumentation on each BARREL payload consists of a simple isotropically sensitive
[https://en.wikipedia.org/wiki/Sodium_iodide sodium iodide]  
[https://en.wikipedia.org/wiki/Sodium_iodide sodium iodide]  
[https://en.wikipedia.org/wiki/Scintillation_detector scintillation counter].
[https://en.wikipedia.org/wiki/Scintillation_detector scintillation counter].
Line 82: Line 73:
the upper atmosphere.
the upper atmosphere.
The time variations reveal the presence of interesting phenomena, and the
The time variations reveal the presence of interesting phenomena, and the
-
detector records their spectra over a wide energy range  
+
detector records their spectra over a wide energy range.
The solar gamma-rays and hard X-rays result from similar physics, but
The solar gamma-rays and hard X-rays result from similar physics, but
with the collisions taking place in the solar atmosphere instead of the Earth's.
with the collisions taking place in the solar atmosphere instead of the Earth's.
Line 88: Line 79:
== BARREL Solar Observations ==
== BARREL Solar Observations ==
-
The BARREL detectors respond to many things, since they are above the
+
The BARREL detectors respond to many things.
-
atmosphere.
+
The full list would include many sources of cosmic X-rays, the Sun as we discuss in this nugget, the Van Allen Belts by design, and radiation from
-
The full list would include many sources of cosmic X-rays, the Sun as
+
-
illustrated here, the Van Allen Belts by design, and radiation from
+
the Earth's atmosphere.
the Earth's atmosphere.
-
For each of these components, the others would be termed "background
+
For each of these components, the others would often be termed "background
-
radiation" and just reduce the quality of the observation - but that is
+
radiation". When studying one of these events, the others reduce the quality of the observation. However, these other events can sometimes help with  the calibration of the data of interest. for instance, the [http://en.wikipedia.org/wiki/Annihilation_radiation annihilation line] in the atmosphere is used to help calibrate the energy of the events BARREL observes and [http://en.wikipedia.org/wiki/Gamma-ray_burst Gamma Ray Bursts] have been found to be useful in making sure the timing of events is correct between payloads. Some times these other sources are useful and sometimes not, but that is
-
how astrophysics usually works!
+
how science usually works!
-
Figure 2 shows the BARREL responses to the modest M-class flare  
+
Figure 2 shows the BARREL responses to the active region on the Sun which included an M-Class flare  
-
SOL2014-02-07T10:29.
+
SOL2014-02-07T10:29 as well as radio bursts.
-
Note that BARREL payload "2O" missed out, but note also (the lower left
+
Note that BARREL payload "2O" missed out, (the lower left
-
panels) that it was at low altitude.
+
panels). It was at a lower altitude which may have resulted in severe extinction of the incident solar radiation,
-
This results in severe extinction of the incident solar radiation,
+
especially since the Sun is low on the horizon even at high noon at
especially since the Sun is low on the horizon even at high noon at
-
such latitudes - if up at all.
+
such latitudes late in the southern hemispheric summer.
[[File:219f2.png|800px|thumb|center|Fig. 2:  
[[File:219f2.png|800px|thumb|center|Fig. 2:  
-
A large complicated figure!
 
The panels on the left show, top to bottom, the  
The panels on the left show, top to bottom, the  
[http://www.swpc.noaa.gov/today.html GOES]
[http://www.swpc.noaa.gov/today.html GOES]
Line 112: Line 99:
BARREL balloons flying on 7 February; and their heights and local
BARREL balloons flying on 7 February; and their heights and local
times (longitudes).
times (longitudes).
-
On the right is the clear response two of them gave to the modest flare at
+
On the right is a zoomed in version of the top four panels from the figure on the left. A clear response to the activity from sunspot 1944 can be seen in the GOES data as well as in two of the BARREL payloads.
-
10:28 UT.
+
]]
]]
-
Why is this interesting?
+
Both RHESSI and [http://hesperia.gsfc.nasa.gov/fermi_solar/ Fermi]
-
The BARREL view of solar flares will likely have important consequences,
+
routinely produce comparable or better data for solar active regions such as these. However, as during the BARREL campaign there are always balloons up, and during the months of December and January are completely sun-lit, the balloons do not go into eclipse. Thus this small balloon mission may be able to help add data to the study of these solar active regions.  
-
depending upon the development of solar activity.
+
-
Many balloon flights, starting in the 1950's [Ref. 1] have made numerous
+
-
discoveries with more primitive instruments.
+
-
The multi-detector observation is interesting too, although we certainly
+
-
expect the solar X-ray intensity to be uniform on the small angular
+
-
scale subtended by Antarctica at the Sun.
+
-
That is because of calibration.
+
-
At some point we will have sensitive and well-calibrated sensors in
+
-
deep space, on large angular scales, and we fully expect to be able
+
-
to measure interesting anisotropies in the flare emissions.
+
== Conclusions ==
== Conclusions ==
-
BARREL reminds us of the origins of solar high-energy astrophysics  
+
These solar and GRB events observed by BARREL remind us of the origins of solar high-energy astrophysics  
(soft X-rays, hard X-rays, gamma rays,  
(soft X-rays, hard X-rays, gamma rays,  
[http://helios.gsfc.nasa.gov/sep.html "solar cosmic rays"]),  
[http://helios.gsfc.nasa.gov/sep.html "solar cosmic rays"]),  
-
and we hope that analysis of many events can be organized.
+
where many interesting properties of solar active regions at high energies
-
Last year's campaign netted 1,380 hours of observation - likely many
+
were first discovered a half-century ago, by Winckler and his group.
-
solar flares - and this year's is still in progress at time of writing.
+
== References ==
== References ==

Latest revision as of 13:34, 20 February 2014


Nugget
Number: 219
1st Author: Greg Bowers
2nd Author: Alexa Halford
Published: February 17, 2014
Next Nugget: TBD
Previous Nugget: Instantaneous Flare Properties
List all



Contents

Introduction

Solar hard X-rays and gamma-rays were discovered in the middle of the last century via balloon-borne instruments [Ref. 1] deployed by the Minnesota physicists L.E. Peterson and J.R. Winckler; the latter also discovered sprites. By modern naming convention, we'd call their flare SOL1958-03-20T13:05, but it preceded any useful soft X-ray observations and so there is no GOES classification of the event. Peterson & Winckler do report the simultaneous occurrence of a "magnetic crotchet," as also detected in the case of the Carrington flare in 1859. Such a geomagnetic effect clearly indicates the presence of strong solar soft X-ray emission along with the high-energy radiations discovered from the balloon.

In this Nugget we show how a recent Antarctic multi-balloon mission, BARREL has also been able to observe some types of solar activity. Robyn MIllan of Dartmouth College is the lead scientist of this ambitious experiment. As with the original Peterson-Winckler experiment, BARREL wasn't designed to study solar activity, but some of these signals from the Sun come through loud and clear. BARREL's primary mission is to study the loss of electrons to the upper atmosphere from the Earth's Van Allen Belts.

How BARREL Works

A stream of small balloons, 1 - 8 at any given time, circle the Antarctic continent, following the vortex winds at high altitudes in the polar regions. These payloads are launched from two stations; SANAE IV and Halley 6. Power comes from solar cells, and data is retrieved over the iridium satellite network to an automated real-time webpage, allowing the ground-based scientists to follow along. These multi-point measurements allow us to better determine temporal and spatial structures in the radiation belts. A [http://www.nasa.gov/content/goddard/nasa-funded-science-balloons-launch-in-antarctica/#.UwJH_yj5Q-Y video describing the BARREL Mission along with a NASA blurb] goes into more detail than we do here in this nugget. A picture of one of the BARREL launches can be seen in Figure 1, taken from the South African Antarctic station SANAE shortly after launch.

Fig. 1: A BARREL balloon shortly after launch (view from below). One can see the balloon billowing out, still far from inflated since it is just after launch; the orange parachute, furled, and the payload itself. The payload itself weighs only about 20 kg, and is whisked up to 30-35 km, into the stratosphere within a couple of hours. The balloon can maintain this altitude for the time it takes to circumnavigate the globe, albeit at very high latitude.

The instrumentation on each BARREL payload consists of a simple isotropically sensitive sodium iodide scintillation counter. This responds well to the gamma-rays and hard X-rays resulting from bremsstrahlung as the expected relativistic electrons undergo atomic collisions in the upper atmosphere. The time variations reveal the presence of interesting phenomena, and the detector records their spectra over a wide energy range. The solar gamma-rays and hard X-rays result from similar physics, but with the collisions taking place in the solar atmosphere instead of the Earth's.

BARREL Solar Observations

The BARREL detectors respond to many things. The full list would include many sources of cosmic X-rays, the Sun as we discuss in this nugget, the Van Allen Belts by design, and radiation from the Earth's atmosphere. For each of these components, the others would often be termed "background radiation". When studying one of these events, the others reduce the quality of the observation. However, these other events can sometimes help with the calibration of the data of interest. for instance, the annihilation line in the atmosphere is used to help calibrate the energy of the events BARREL observes and Gamma Ray Bursts have been found to be useful in making sure the timing of events is correct between payloads. Some times these other sources are useful and sometimes not, but that is how science usually works!

Figure 2 shows the BARREL responses to the active region on the Sun which included an M-Class flare SOL2014-02-07T10:29 as well as radio bursts. Note that BARREL payload "2O" missed out, (the lower left panels). It was at a lower altitude which may have resulted in severe extinction of the incident solar radiation, especially since the Sun is low on the horizon even at high noon at such latitudes late in the southern hemispheric summer.

Fig. 2: The panels on the left show, top to bottom, the GOES soft X-ray fluxes (flares); three sets of counting rates from different BARREL balloons flying on 7 February; and their heights and local times (longitudes). On the right is a zoomed in version of the top four panels from the figure on the left. A clear response to the activity from sunspot 1944 can be seen in the GOES data as well as in two of the BARREL payloads.

Both RHESSI and Fermi routinely produce comparable or better data for solar active regions such as these. However, as during the BARREL campaign there are always balloons up, and during the months of December and January are completely sun-lit, the balloons do not go into eclipse. Thus this small balloon mission may be able to help add data to the study of these solar active regions.

Conclusions

These solar and GRB events observed by BARREL remind us of the origins of solar high-energy astrophysics (soft X-rays, hard X-rays, gamma rays, "solar cosmic rays"), where many interesting properties of solar active regions at high energies were first discovered a half-century ago, by Winckler and his group.

References

Personal tools
Namespaces
Variants
Actions
Navigation
Toolbox